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Preface

This thesis is divided in two parts, the first dealing with hyperbolic groups,
as well as the Word Problem and the Transformation Problem in this type of
groups. We will give an introduction to the geometry of hyperbolic spaces
and geometric group theory. After the foundation for the definition of a
hyperbolic group have been laid, we will state the Word and Conjugacy
Problem and show how these can be solved in hyperbolic groups.

The second part introduces Morse theory on cell complexes, which is an
useful tool to examine the topology of a given cell complex. The motivation
for this is a criterion using Morse theory given by Noel Brady, which enables
us to recognize free-by-cyclic groups by studying their 2-presentation com-
plex with Morse theory. We will prove this criterion and show how one can
apply it to a given group presentation by demonstrating it on some examples
given by Brady.

1 Hyperbolic spaces and groups

Definition 1.1 (Hyperbolic groups). A finitely generated group is called
hyperbolic if its Cayley graph is a hyperbolic metric space.

This definition is the motivating theme for this section. Despite looking
simple and innocuous, we have to take care that it is well-defined, since
a group can have many different generating sets and thus many different
Cayley graphs. We will show that the Cayley graphs w.r.t. a finite generating
sets of a group are quasi-isometric to each other and that hyperbolicity is
preserved under quasi-isometry. The latter will require some work, which we
will use as opportunity to acquaint ourselves with the geometry of hyperbolic
spaces and establish some useful results for the main theorems of this thesis.

First we introduce the Word metric of a group and definition of a Cayley
graph, which allow us to study groups as geometric objects.

Definition 1.2 (Word metric). Let G be a group with generating set S ⊂ G.
Define for g ∈ G, g 6= 1 the length of g,

lS(g) := min
{
n | g = t1 · · · tn, ti ∈ S or t−1

i ∈ S
}
.

Furthermore let lS(1) = 0. Then the following holds:

(i) lS(g) = 0⇔ g = 1

(ii) lS(g) = lS(g−1)

(iii) lS(gh) ≤ lS(g) + lS(h)
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If the generating set is clear from the context, we also write l(g) to denote
the length of a group element g ∈ G.

By means of this length lS , we can define a metric dS on G, the word
metric dS on G w.r.t. S:

dS(g, h) := lS(g−1h).

This is clearly a metric, and moreover it is left-invariant, i.e. dS(g, h) =
dS(kg, kh). Another way to express is that G acts isometrically by left-
multiplication on itself, i.e. G×G→ G, (k, g) 7→ kg is an isometry.

Definition 1.3 (Cayley graph). LetG be a group, S ⊂ G a set of generators,
i.e. G = 〈S〉. Then the Cayley graph CS(G) of G w.r.t. S is the graph with
vertices V = G and edges E = {{g, h} | g, h ∈ G, g 6= h, g−1h ∈ S±−1},
where S±−1 := S ∪ S−1 := S ∪

{
s−1|s ∈ S

}
.

Thus we have a natural inclusion G ↪→ CS(G) and for convenience we do
not differentiate between the group element g ∈ G and the vertex v ∈ CS(G)
representing this element and simply write g ∈ CS(G).

This allows a more accessible formulation: Two vertices g, h are joined
by an edge if and only if there exists s ∈ S such that h = gs or g = hs i.e.
h = gs−1.

Is w = s1 · · · sn a word given in generators si ∈ S±−1, we can traverse
the path starting at a vertex g labelled with w in CS(G). Starting at g,
we traverse the edge corresponding to s1 connecting g to gs1. Then we
successively traverse the edges corresponding to si connecting gs1 · · · si−1 to
gs1 · · · si.

So far this definition is a purely combinatorial one. To obtain a geometric
object, we make the Cayley graph into a metric space by identifying edges
with copies of the unit interval. Then the word metric on G naturally
extends to a metric on CS(G).

We will now define hyperbolic spaces. Remember that a geodesic in a
metric space X is an isometric embedding I → X of an interval I ⊂ R.
A metric space is called geodesic, if for every pair of points x, y ∈ X there
exists a geodesic connecting x with y. We write [x, y] to denote a geodesic
segment joining x and y. Note that this geodesic is not uniquely determined
in general, so unless specified otherwise, it refers to a choice of a geodesic
segment connecting x and y. However this is not a problem, since we will
not depend on the choice of this segment and only use the fact that it is
geodesic. Later we will also see that hyperbolicity places an restriction on
how far two geodesics connecting the same endpoints can be apart.

Definition 1.4 (δ-hyperbolic space). Let (X, d) be a geodesic space. A
geodesic triangle ∆ = ∆(p, q, r) ⊂ X with vertices p, q, r ∈ X is called δ-
slim for some δ ≥ 0, if each of its sides is contained in the δ-neighbourhood
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of the other two sides. This means that for each x ∈ [p, q], where [p, q] ⊂ ∆
denotes the geodesic segment joining p and q, there exists y ∈ [q, r] ∪ [r, p]
such that d(x, y) ≤ δ and analogous inequalities hold for the other two sides.

X is called δ-hyperbolic, if there exists a δ ≥ 0 such that every geodesic
triangle is δ-slim. If we are not interested in the constant δ, we simply say
that X is hyperbolic.

This definition of δ-hyperbolic is generally credited to Eliyahu Rips and
therefore called Rips definition.

[p, q] [r, q]

[p, r]p

q

r

Figure 1: A slim triangle with the δ-neighbourhoods indicated in grey.

Although we still have to prove that the notion of hyperbolic groups is
well-defined, the definitions given so far allow us to discuss some examples.

Example 1.5 (Free groups are hyperbolic). Let Fm be the free group of
rank m. Then Fm is 0-hyperbolic.

Proof. Let S = {x1, . . . , xm} be a free generating set of Fm. The Cayley
graph CS(F ) is a tree. Geodesic triangles are (possibly degenerated) tripods,
so each side lies in the 0-neighbourhood of the union of the other sides.

Example 1.6 (Finite groups are hyperbolic). Let G be a finite group. Then
G is δ-hyperbolic, for some δ ≥ 0.

Proof. Because the vertices of CS(G) are in one-to-one correspondence with
group elements of G, CS(G) is finite for any generating set S ⊂ G. Hence
the diameter of CS(G) gives an upper bound on δ.

Definition 1.7 (Quasi-isometry). Let f : X → Y be a map between metric
spaces (X, dX) and (Y, dY ). Then the map f is a (λ, ε)-quasi-isometric
embedding, if there are constants λ ≥ 1 and ε ≥ 0 such that for all x, x′ ∈ X

1

λ
dX(x, x′)− ε ≤ dY (f(x), f(x′)) ≤ λdX(x, x′) + ε.
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Note that if this condition holds for some λ and ε, it also holds for λ′ and ε′

if λ′ ≥ λ and ε′ ≥ ε. A map f ′ : X → Y is said to have finite distance from
f , if there is a constant c ≥ 0 such that for all x ∈ X

dY (f(x), f ′(x)) ≤ c.

Such an f is called a (λ, ε)-quasi-isometry if it is a (λ, ε)-quasi-isometric
embedding for which there is a quasi-inverse quasi-isometric embedding, i.e.
if there is a quasi-isometric embedding g : Y → X such that g ◦ f has finite
distance from idX and f ◦ g has finite distance from idY .

If the additive error ε is zero, f is also called a bilipschitz embedding if
it is (λ, 0)-quasi-isometric embedding respectively a bilipschitz equivalence if
it is a (λ, 0)-quasi-isometry.

This definition of quasi-isometry is good in the sense that it gives one
an idea about the nature of quasi-isometries. However, checking that a map
between two metric spaces is a quasi-isometry is cumbersome, since one has
to show that there is a quasi-inverse quasi-isometric embedding and that
the compositions of both maps have finite distance to the identity in the
respective space. The next proposition, adapted from [Lö11], alleviates this
by giving a criterion which ensures the existence of such quasi-inverses.

Proposition 1.8 (Alternative characterization of quasi-isometry). Let f :
X → Y be a map between metric spaces (X, dX) and (Y, dY ). Then f is a
quasi-isometry if and only if it is a quasi-isometric embedding with quasi-
dense image.

A map f : X → Y is said to have quasi-dense image if there is a constant
c ≥ 0 such that for all y ∈ Y there exists a x ∈ X satisfying dy(f(x), y) ≤ c.

Proof. Suppose that f : X → Y is a quasi-isometry. Then there exists a
quasi-inverse quasi-isometric embedding g : Y → X. Since f ◦ g has finite
distance to idY , there exists c ≥ 0 such that dY (f ◦g(y), y) ≤ c for all y ∈ Y .
In particular we have that for all y ∈ Y exists x ∈ X (namely g(y)) such
that dY (f(x), y) ≤ c. Hence f has a quasi-dense image.

Now let f : X → Y be a (λ, ε)-quasi-isometric embedding with quasi-
dense image. By increasing the constants λ, ε and c, if necessary, one can
obtain a constant k > 0 (e.g. k = max {λ, ε, c}) such that for all x, x′ ∈ X

1

k
dX(x, x′)− k ≤ dY (f(x), f(x′)) ≤ kdX(x, x′) + k

and for all y ∈ Y exists x ∈ X satisfying dY (f(x), y) ≤ k. One can construct
a quasi-inverse quasi-isometric embedding in the following way: Define a
map g : Y → X, y 7→ xy by invoking the axiom of choice to choose for every
y ∈ Y an element xy with dY (f(xy), y) ≤ k.
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Then g is a quasi-inverse to f , because by construction holds for all
y ∈ Y

dY (f ◦ g(y), y) = dY (f(xy), y) ≤ k.

Since f is a quasi-isometric embedding, one has for all x, y ∈ X

1

k
dX(x, y)− k ≤ dY (f(x), f(y))⇔ dX(x, y) ≤ kdY (f(x), f(y)) + k2.

This and the choice of xy ensures that for all x ∈ X

dX(g ◦ f(x), x) = dX(xf(x), x) ≤ kdY (f(xf(x)), f(x)) + k2 ≤ kk + k2 = 2k2.

So both f ◦g and g◦f have finite distance from the respective identity maps.
It remains to show that g is also a quasi-isometric embedding.

To this end, let y, y′ ∈ Y . Then

dX(g(y), g(y′)) = dX(xy, xy′) ≤ kdY (f(xy), f(xy′)) + k2.

Using the triangle inequality, one can intersperse y and y′

= k
(
dY (f(xy), y) + dY (y, y′) + dY (f(xy′), y

′)
)

+ k2.

Remembering that xy = g(y) and xy′ = g(y′) and that f ◦ g has finite
distance k to idY , this becomes

≤ k
(
dY (y, y′) + 2k

)
+ k2 = kdY (y, y′) + 3k2.

Similarly one can obtain a lower bound, however using the reverse triangle
inequality:

dX(g(y), g(y′)) = dX(xy, xy′) ≥
1

k
dY (f(xy), f(xy′))− 1

≥ 1

k

(
dY (y, y′)− dY (f(xy), y)− dY (f(xy′ , y

′)
)
− 1

≥ 1

k

(
dY (y, y′)− 2k

)
− 1

=
1

k
dY (y, y′)− 3 ≥ 1

k
dY (y, y′)− 3k2.

This shows that g is a quasi-isometric embedding.

This allows us to show that Cayley graphs belonging to different finite
generating sets of a finitely generated group are quasi-isometric to each
other.

Lemma 1.9 (Quasi-isometry of Cayley graphs). Let G be a finitely gener-
ated group, S, S′ ⊂ G two different finite generating sets of G and let CS
and CS′ be the Cayley graphs of G w.r.t. S and S′. Then the identity map
idG is a quasi-isometry between CS and CS′ .
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Proof. First we show that (G, dS) and (G, dS′) are quasi-isometric to each
other. In a second step, we show that (G, dS) ↪→ (CS(G), dS) is a quasi-
isometry.

Since S is finite, the maximum

λ := max
a∈S

dS′(1, a)

exists and is finite. Let g, h ∈ G and let n := dS(g, h). Thus we can write
g−1h = s1 · · · sn for s1, · · · , sn ∈ S. Using the triangle inequality and the
left-invariance of the word metric, we can conclude that

dS′(g, h) = dS′(g, gs1 · · · sn)

≤ dS′(g, gs1) + dS′(gs1, gs1s2) + · · ·+ dS′(gs1 · · · sn−1, gs1 · · · sn)

= dS′(1, s1) + dS′(1, s2) + · · ·+ dS′(1, sn)

≤ nλ = λdS(g, h).

Reversing the roles of S and S′, we obtain that idG : (G, dS)→ (G, dS′)
is a bilipschitz equivalence and therefore also a quasi-isometry.

Since quasi-isometry is an equivalence relation, it suffices to show that
(G, dS) ↪→ (CS(G), dS) is a quasi-isometry: For every y ∈ CS(G) exists a
x ∈ G such that dS(x, y) ≤ 1, thus the inclusion has a quasi-dense image.
Since the metrics of G and CS(G) coincide on the image of G, it is also
a quasi-isometric embedding, thus, by Proposition 1.8, the inclusion is a
quasi-isometry.

To see that the definition of hyperbolic groups makes sense, it remains
to show that hyperbolicity is preserved under quasi-isometry (the constant
δ may change, though). As mentioned, this requires some more work.

The following observation and lemmata are adapted from [BH09], which
covers many of the properties of hyperbolic spaces and groups. To build
intuition for hyperbolic spaces, note the following.

Observation 1.10 (Geodesics in hyperbolic space stay close to each other).
Let (X, d) be a δ-hyperbolic space for some δ ≥ 0 and let p, q ∈ X. If c, c′

are two geodesics with endpoints p and q, then d(im(c), im(c′)) ≤ δ.

Proof. One can view c and c′ as a degenerated geodesic triangle: Choose a
point x ∈ c and consider the geodesic triangle with sides [p, x] ⊂ c, [x, q] ⊂ c
and c′. Then c′ is contained in the δ-neighbourhood of [p, x]∪ [x, q] = c.

This observation generalizes to rectifiable curves and quasi-geodesics as
well, where the latter are defined analogous to geodesics: A (λ, ε)-quasi-
geodesic in a metric space is a (λ, ε)-quasi-isometric embedding of an inter-
val of the real line. The following lemma shows that in hyperbolic space
rectifiable curves behave well, i.e. they stay comparable close to geodesics
connecting the same endpoints.

7



Lemma 1.11 (Rectifiable curves stay close to geodesics). Let X be a δ-
hyperbolic geodesic space and let c be a rectifiable path in X. If [p, q] is a
geodesic segment connecting the endpoints of c, then for every x ∈ [p, q]

d(x, im(c)) ≤ δ| log2 l(c)|+ 1.

Proof. The case that l(c) ≤ 1 is trivial, thus suppose l(c) > 1: Without loss
of generality let c : [0, 1]→ X be parameterized proportional to arc length,
p = c(0) and q = c(1). Let N be such that l(c)/2N+1 < 1 ≤ l(c)/2N . Let be
∆1 = ∆([c(0), c(1/2)], [c(1/2), c(1)], [c(0), c(1)]) a geodesic triangle with the
given geodesic [c(0), c(1)].

c(1
2)

c(0) = p c(1) = q

y1

y2

y

x

∆1∆2

Figure 2: In hyperbolic space rectifiable paths stay close to geodesics. We
see some of the geodesic triangles used in the proof of Lemma 1.11.

Application of the criterion for δ-slim triangles, we find y1 in the union
[(c(0), c(1/2)] ∪ [c(1/2), c(1)] such that d(x, y1) ≤ δ. Repeat this process
inductively with a geodesic triangle consisting of the geodesic containing
yN−1 and two new sides chosen as above. We find in the N -th stage a yN
such that d(x, yN ) ≤ δN on an interval of length l(c)/2N with endpoints in
im(c). Define y to be the closest endpoint of the interval. It follows that
l(c)/2N+1 < 1, 2N ≤ l(c) and from this we can conclude that d(x, y) ≤
δ| log2 l(c)|+ 1.

Lemma 1.12 (Taming quasi-geodesics). Let X be a geodesic space, c :
[a, b] → X a (λ, ε)-quasi-geodesic. Then there exists a continuous (λ, ε′)-
quasi-geodesic c′ : [a, b]→ X with

(1) c′(a) = c(a) and c′(b) = c(b)

(2) ε′ = 2(λ+ ε)

(3) l(c′|[t,t′]) ≤ k1d(c′(t), c′(t′)) + k2 for all t, t′ ∈ [a, b] where k1 = λ(λ + ε)
and k2 = (λε′ + 3)(λ+ ε)

(4) dH(im(c), im(c′)) ≤ (λ+ ε), where dH is the Hausdorff distance.
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Proof. Choose c′(t) := c(t) for all t ∈ Σ := {a, b}∪(Z∩ [a, b]) and define c′ as
concatenation of linear reparameterizations of geodesic segments connecting
these points. The length of each segment is at most (λ+ ε) and every point
of im(c)∪ im(c′) lies in the ((λ+ ε)/2)-neighbourhood of c(Σ), thus we have
proven (4).

For t ∈ [a, b] define [t] ∈ Σ to be the point closest to t. For t, t′ ∈ [a, b]
we have

d(c′(t), c′(t′) ≤ d(c′([t]), c([t′])) + (λ+ ε)

≤ λ|[t]− [t′]|+ ε+ (λ+ ε)

≤ λ(|t− t′|+ 1) + (λ+ 2ε).

Because λ ≥ 1, the following inequality holds:

1

λ
|t− t′| − 2(λ+ ε) ≥ 1

λ
|t− t′| − λ− 1

λ
− 2ε

≤ 1

λ
(|t− t′| − 1)− (λ+ 2ε)

≤ 1

λ
|[t]− [t′]| − (λ+ 2ε)

≤ d(c′([t]), c′([t′]))− (λ+ ε)

≤ d(c′(t), c′(t′))

This shows that c′ is a (λ, ε′)-quasi-geodesic with ε′ = 2(λ+ ε) as stated in
(2).

For proving (3) let n,m ∈ [a, b] be integers:

l(c′|[n,m]) =

m−1∑
i=n

d(c(i), c(i+ 1)) ≥ λ+ ε|m− n|

l(c′|[a,m]) ≤ (λ+ ε)(m− a+ 1)

It follows that for all t, t′ ∈ [a, b]

l(c′|[t,t′]) ≤ (λ+ ε)(|[t]− [t′]|+ 2)

d(c′(t), c′(t′)) ≥ 1

λ
|t− t′| − ε′ ≥ 1

λ
(|[t]− [t′]| − 1)− ε′.

Lemma 1.13 (Stability of quasi-geodesics). For all δ > 0, λ ≥ 1, ε ≥ 0 there
exists a constant R = R(δ, λ, ε) such that: If X is a δ-hyperbolic space, c a
(λ, ε)-quasi-geodesic and [p, q] a geodesic segment joining the endpoints of
c, then dH([p, q], im(c)) < R, where dH again is the Hausdorff distance.
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Proof. First tame c by replacing it with c′ as in Lemma 1.12. Let [p, q] be a
geodesic segment joining the endpoints of c′. Let D := sup{d(x, im(c′)|x ∈
[p, q]} and let x0 ∈ [p, q] be such that this supremum is attained. Then the
intersection of the D-neighbourhood B(x0, D) of x0 with im(c′) is empty.

Choose y ∈ [p, x0] such that d(y, x0) = 2D (or if not possible let y = p)
and z ∈ [x0, q] similarly (or z = q). Choose now y′, z′ ∈ im(c) such that
d(y, y′) ≤ D and d(z, z′) ≤ D and geodesic segments [y, y′], [z, z′].

Consider the path γ from y to z traversing [y, y′], then following c′ from
y′ to z′ and finally traversing [z′, z]. This path lies outside of B(x0, D) and
it follows that

d(y′, z′) ≤ d(y′, y) + d(y, z) + d(z, z′) ≤ 6D.

By Lemma 1.12(3) we have that l(γ) ≤ 6Dk1 + k2 + 2D.
From Lemma 1.11 follows that d(x0, im(γ)) = D. Therefore D − 1 ≤

δ| log2(l(γ))| ≤ δ| log2(6Dk1 + k2 + 2D)|, so we have an upper bound on D
depending only on δ, λ and ε.

Let D0 be such an upper bound. Then im(c′) is contained in the R′ =
D0(k1 + 1) + k2/2 neighbourhood: Consider a maximal subinterval [a′, b′] ⊂
[a, b] such that c′([a′, b′]) lies outside of the D0 neighbourhood B(D0, [p, q]) of
[p, q]. Every point of [p, q] lies in B(D0, im(c′)), so by connectedness there are
w ∈ [p, q], t ∈ [a, a′], t′ ∈ [b, b′] such that d(w, c′(t)) ≤ D0 and d(w, c′(t′)) ≤
D0. It follows that d(c′(t), c′(t′)) ≤ 2D0 and by Lemma 1.12(3) we have
l(c′|[t,t′]) ≤ 2k1D0 + k2, so im(c′) is contained in the R′-neighbourhood of
[p, q] and by Lemma 1.12(4) we obtain R = R′ + λ+ ε.

Corollary 1.14 (Quasi-geodesic triangles are slim). A geodesic metric space
X is hyperbolic if and only if for every λ ≥ 1, ε > 0, there exists a constant
M such that every λ, ε-quasi-geodesic triangle in X is M -slim, and if X is
δ-hyperbolic, then M depends only on δ, λ, ε.

Proof. Let X be δ-hyperbolic space, p, q, r ∈ X and ∆ be a (λ, ε)-quasi-
geodesic triangle with vertices p, q, r. By Lemma 1.13 there exists a constant
R = R(δ, λ, ε) such that all sides have Hausdorff distance of less than R to
geodesics connecting the respective endpoints. Because the geodesics form a
geodesic triangle ∆(p, q, r) and X is δ-hyperbolic, each geodesic is contained
in the δ-neighbourhood of the union of the other two geodesics. So we have
that each quasi-geodesic side is contained in the δ+2R-neighbourhood of the
union of the other two quasi-geodesic sides, thus ∆ is M -slim for M = δ+2R.

Conversely, if there exists such a M , every geodesic triangle is M -slim
since geodesics are (1, 0)-quasi-geodesics.

This finally enables us to prove that hyperbolicity is an invariant of
quasi-isometry.
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Theorem 1.15 (Hyperbolicity is an invariant of quasi-isometry). Let (X, d)
and (X ′, d′) be geodesic metric spaces and let f : X ′ → X be a (λ, ε)-quasi-
isometric embedding. If X is δ-hyperbolic, then X ′ is δ′-hyperbolic, where
δ′ depends on δ, λ and ε.

Proof. Let ∆ be a geodesic triangle in X ′ with sides γ1, γ2, γ3 and consider
the (λ, ε)-quasi-geodesic triangle in X with sides f ◦ γ1, f ◦ γ2, f ◦ γ3. By
Corollary 1.14 there is a constant M = M(δ, λ, ε) such that this triangle is
M -slim, thus for all x ∈ im(γ1) there exists y ∈ im(γ2) ∪ im(γ3), such that
d(x, y) ≤M . Since f is a (λ, ε)-quasi-isometric embedding, we have that

d(x, y) ≤ λd(f(x), f(y)) + ελ ≤ λM + λε.

Analogous we see that f ◦ γ2 and f ◦ γ3 are contained in the λM +λε =: δ′-
neighbourhood of the union of the respective other sides. Thus ∆ is δ′-slim
and X ′ is δ′-hyperbolic.

Now we see that the term hyperbolic group is well-defined, since it does
not depend on the choice of the generating set. While the value of δ might
change according to Theorem 1.15, the characteristic traits of hyperbolicity
are preserved.

2 The Word and Conjugacy Problem of hyper-
bolic groups

In this section we want to discuss the Word and Transformation problem of
hyperbolic groups. Max Dehn formulated these already in 1911 ([Deh11]),
long before the theory of computability emerged. The question is whether
there exists an algorithm to solve these problems or not.

Problem 2.1 (The Word Problem). Given a word of a group in form of a
product of generators, is this word the identity?

Problem 2.2 (The Transformation Problem). Given two group elements
g, h ∈ G, can they be transformed into each other, i.e. exists u ∈ G satisfying
g = uhu−1?

Another name for the Transformation Problem is Conjugacy Problem,
since one essentially asks whether g and h are conjugate in G or not. Note
that these problems are not solvable in general and vary in difficulty. In
fact, the Transformation Problem contains the Word Problem as a special
case, namely if w is a word in in form of a product of generators, we can ask
whether or not 1 = uwu−1 i.e. 1 = w for some u ∈ G.

Our algorithms will depend on the length of a given input word w, i.e.
the number of letters in this particular word. If S ⊂ G is a generating set
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of the group G and w = s1 · · · sm a word in generators S±1, we shall use
|w| := m to denote its length, regardless of whether w is a reduced word
or not. Clearly this is not the same length as defined in Section 1, e.g.
l(ss−1) = l(1) = 0, but |ss−1| = 2.

2.1 Solving the Word Problem of hyperbolic groups

First we want to solve the Word Problem in hyperbolic groups. For this
we will show that hyperbolic groups admit to a Dehn presentation, which
allows us to apply Dehn’s Algorithm.

Definition 2.3 (Dehn presentation). A finite presentation 〈S | R〉 of a
group G is called a Dehn presentation if R =

{
u1v
−1
1 , . . . , unv

−1
n

}
such that:

i) ui = vi in G

ii) |vi| < |ui|

iii) If a word w represents the identity in G then at least one of the ui is a
subword of w.

Algorithm 2.4 (Dehn’s Algorithm for Solving the Word Problem). Let
〈S | R〉 be a Dehn presentation for a group G. Then we can use following
algorithm to solve the Word Problem for a given word w ∈ F(S):

While w is not the empty word, look for a subword of the form ui. If
there is no such subword, stop, because of the third condition of the Dehn
presentation, the word does not represent the identity; if ui occurs as a
subword, replace it with vi and repeat with the shorter word obtained from
w.

After at most |w| iterations the word is either reduced to the empty
word, i.e. w = 1 in G, or else it is verified that w does not represent the
identity.

Now it has to be shown that if G is a hyperbolic group, then G admits
to a Dehn presentation. For this it is useful to establish a local criterion for
recognizing quasi-geodesics in hyperbolic spaces.

Definition 2.5 (k-Local Geodesics). Let (X, d) be a metric space, k > 0.
A path c : [a, b] → X is said to be k-local geodesic, if d(c(t), c(t′)) = |t − t′|
for all t, t′ ∈ [a, b] with |t− t′| < k.

Proposition 2.6 (k-Local Geodesics are Quasi-Geodesics). Let X be a δ-
hyperbolic geodesic space and let c : [a, b]→ X be a k-local geodesic, where
k > 8δ. Then

(1) im(c) is contained in the 2δ-neighbourhood of any geodesic segment
[c(a), c(b)] connecting its endpoints
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(2) [c(a), c(b)] is contained in the 3δ-neighbourhood of im(c)

(3) c is a (λ, ε)-quasi-geodesic, where ε = 2δ, λ = (k + 4δ)/(k − 4δ).

Proof. First prove (1). Let x = c(t) be a point of im(c) that is at maximal
distance from [c(a), c(b)]. First we suppose that (t−a) and (b−t) are greater
than 4δ. Then there is a subarc of c centred at x of length strictly greater
than 8δ but less then k. Let y, z be the endpoints of this arc and y′, z′ the
points on [c(a), c(b)] closest to y and z respectively. Consider a geodesic
quadrilateral with vertices y, z, y′, z′ such that the sides [y, z] and [y′, z′] are
the subarcs of c and [c(a), c(b)]. Dividing this quadrilateral with a diagonal,
as shown in Figure 3, and applying the δ-hyperbolic criterion to each of the
resulting triangles, we find w on one of the sides other than [y, z] such that
d(w, x) ≤ 2δ. If w ∈ [y, y′] then there would be a path through w joining x

c(a) c(b)

x = c(t)

y
z

z′y′

Figure 3: The geodesic quadrilateral in the proof of Proposition 2.6 (1). The
dashed diagonal divides the quadrilateral so we can apply the δ-hyperbolic
criterion of slim triangles.

to y′ that was shorter than d(y, y′), thus contradicting our choice of x:

d(x, y′)− d(y, y′) ≤ d(x,w) + d(w, y′)− d(y, w)− d(w, y′)

= d(x,w)− d(y, w)

≤ d(x,w)− [d(y, x)− d(x,w)]

= 2d(x,w)− d(x, y)

< 4δ − 4δ = 0

Now suppose that t − a < 4δ. By choosing z, z′ as above we obtain a
geodesic triangle with sides [c(a), z], [z, z′], [z′, c(a)]. It follows that there
exists a w ∈ [z, z′] ∪ [c(a), z′] with d(w, x) ≤ δ. Again, if w ∈ [z, z′], we can
find a path through w joining x and z′, arriving at the same contradiction
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to our choice of x:

d(x, z′)− d(z, z′) ≥ d(x,w) + d(w, z′)− d(z, w)− d(z, w′)

= d(x,w)− d(z, w)

≤ d(x,w)− [d(z, x)− d(x,w)]

= 2d(x,w)− d(x, y)

< 4δ − 4δ = 0

If both (t− a) and (b− t) are less than 4δ, it follows immediately that c is
a geodesic and, as seen in Observation 1.10, c and [c(a), c(b)] have distance
of at most δ.

To prove (2), let p ∈ [c(a), c(b)]. Because of (1) every point of im(c) lies
in the open 2δ-neighbourhood of [c(a), p] or [p, c(b)]. Since c is connected
there is x ∈ im(c) lying in both neighbourhoods. Choose q ∈ [c(a), p] and
r ∈ [p, c(b)] such that d(x, q) ≤ 2δ and d(r, x) ≤ 2δ. because p ∈ [q, r] it
follows that p lies in the δ-neighbourhood of [q, x] ∪ [r, x], thus

d(p, im(c)) ≤ d(p, [q, x] ∪ [r, x]) + max {d(q, x), d(r, x)} ≤ 3δ.

To prove (3), first note that d(c(t), c(t′)) ≤ |t−t′| for all t, t′ ∈ [a, b], since
c is a k-local geodesic. Thus in order to show that c is a quasi-geodesic one
has to obtain a lower bound of d(c(t), c(t′)) by a linear function of |t−t′|. For
this, divide c into subpaths of length k′ = k/2+2δ and project the endpoints
of these subarcs onto [c(a), c(b)], i.e. make a choice of closest points. The
lower bound is then obtained by estimating the distance between points of
this sequence.

Consider a subarc of length 2k′ and let x and y be the endpoints of
this arc and let m be the midpoint of the arc; let x′, y′ and m′ be points of
[c(a), c(b)] that have a distance of at most 2δ from x′, y′ and m′ respectively.
We will first show that m′ lies between x′ and y′.

Let x0 (resp. y0) be the point on im(c) that has a distance of 2δ from x
(resp. y) in the direction of m. By δ-hyperbolicity and (1) then any geodesic
triangle ∆(x, x′, x0) is contained in the 3δ-neighbourhood of x. Because of
d(x,m) = k′ > 6δ and choice of x0, it follows that d(x0,m) > 3δ, meaning
any such triangle lies completely outside the 3δ-neighbourhood of m, since
c is k-local geodesic for k > 8δ and therefore x0 is the point of ∆(x, x′, x0)
with minimum distance to m. Similarly one can conclude that any geodesic
triangle ∆(y, y′, y0) lies outside the 3δ-neighbourhood of m.

Consider the geodesic quadrilateral with vertices x′, x0, y0 and y′ and di-
vide it by a diagonal into two triangles. Applying the slim triangle condition,
it follows that m lies in the 2δ-neighbourhood of [x0, x

′] ∪ [x′, y′] ∪ [y′, y0].
However [x0, x

′] and [y0, y
′] are sides of the triangles considered above and

have at least distance 3δ to m, thus there exists m′′ ∈ [x′, y′] ⊂ [c(a), c(b)]
such that d(m,m′′) ≤ 2δ.
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If m′ = m′′ then it follows that m′ lies between x′ and y′, so suppose
m′ 6= m′′. By hyperbolicity of the geodesic triangle ∆(m,m′,m′′), any point
between m′ and m′′ has distance of at most 3δ to m, since d(m,m′′) ≤ 2δ
and d(m,m′) ≤ 2δ. In particular neither x′ nor y′ can lie between m′ and
m′′, thus m′ ∈ [x′, y′].

We express c as concatenation of M ≤ (b − a)/k′ geodesics of length k′

and a smaller piece, of length η, at the end. By the preceding argument,
the projections of the endpoints of these geodesics onto [c(a), c(b)] form a
monotone sequence. If p′, q′ ∈ [c(a), c(b)] are successive projections of points
p, q ∈ im(c) one can estimate the minimum distance between p and q as
follows. By (1) it holds that d(p, p′) ≤ 2δ and d(q, q′) ≤ 2δ. Furthermore
d(p, q) = k′ > 6δ and p′ is a point on [c(a), c(b)] closest to p, thus we have
by repeated application of the reversed triangle inequality

d(p′, q′) ≥ |d(p′, p)− d(p, q′)| = d(p, q′)− d(p′, p)

≥ |d(p, q)− d(q, q′)| − d(p, p′)

≥ |k′ − 2δ| − 2δ = k − 4δ.

The triangle inequality yields that the distance from the last projection
point p′ of p to c(b) is at least d(p′, c(b)) ≥ |d(p′, p) − d(p, c(b)| ≥ |2δ − η|
and because p′ is a point closest to p, it holds that d(p′, c(b)) ≥ η − 2δ.

From the choice of M and η it follows that b − a = Mk′ + η and the
concatenation of the subpaths yields

d(c(a), c(b)) ≥M(k′ − 4δ) + η − 2δ = (b− a)− 4δM − 2δ.

Since M ≤ (b− a)/k′, it follows that

d(c(a), c(b)) ≥ (b− a)− 4δ(b− a)/k′ − 2δ =
k′ − 4δ

k′
(b− a)− 2δ.

Remembering the definition of k′, the claimed lower bound is established:

d(c(a), c(b)) ≥ k/2− 2δ

k/2 + 2δ
(b− a)− 2δ =

k − 4δ

k + 4δ
(b− a)− 2δ

For arbitrary t, t′ ∈ [a, b] one obtains the same lower bound, by running the
same argument as above for |t − t′| > k; if |t − t′| ≤ k there is nothing to
prove, since c is k-local geodesic.

Corollary 2.7. If (X, d) is a δ-hyperbolic space, there is no closed k-local
geodesic subpath for k > 8δ.

Proof. If c(a) = c(b) then im(c) is contained in B(c(a), 2δ) and since c is
8δ-local geodesic it follows that a = b, thus c is constant.
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This Corollary allows us to find shortcuts in the Cayley graph of a hyper-
bolic group, which we will need in the construction of a Dehn presentation.

Lemma 2.8 (Shortcuts in hyperbolic graphs). Let (X, d) be a δ-hyperbolic
metric graph with unit edge lengths and δ an integer. Given any non-trivial
locally-injective loop c : [0, 1]/∼ → X (where ∼ is the equivalence relation
identifying 0 and 1) beginning at a vertex, one can find s, t ∈ [0, 1] such that

(i) l(c|[s,t]) ≤ 8δ + 1 and c|[s,t] is not geodesic

(ii) c(t) and c(s) are vertices

(iii) there exists a geodesic p joining c(t) and c(s) with l(p) ≤ l(c|[s,t])− 1.

Proof. According to Corollary 2.7 X contains no closed loops which are k-
local geodesics for k = 8δ + 1

2 . So we can choose a non-geodesic subarc
p′ = c|[s0,t0] of c of length less than k and a geodesic p connecting c(s0) to
c(t0). Let s, t ∈ [0, 1] such that c(s) and c(t) is the first respective last vertex
that p passes.

We only have to show that condition (i) is satisfied, because (ii) follows
from the construction and (iii) results from X having unit edge lengths, thus
the length difference between two edge paths connecting the same vertices
is an integer.

Let e and f be the first respective last vertex through which p′ passes.
Clearly, if both e = c(s) and f = c(t), then condition (iii) is satisfied.
However, if at least one equality does not hold, we have to attend to some
details.

The first case is that only one equality holds, i.e. we have the following
two cases.

1.1) e = c(s) and f 6= c(t). Since p′ had length less than k, the subarc of c
connecting the vertices e to f has length of at most 8δ. Extending p′ to
c(t) increases this length by at most 1 and makes p′ = c|[s,t] satisfying
condition i).

1.2) f = c(t) and e 6= c(s). This case is symmetric to case 1.1).

The second case is that e 6= c(s) and f 6= c(t). Here we have to consider
four cases.

2.1) d(c(s0), e)+d(c(t0), f) ≥ 1.5. In this case we can extend p′ to c(s) and
c(t), lengthening it by at most 0.5. Then c|[s,t] = p′ and so condition
i) is satisfied.

2.2) d(c(s0), e) + d(c(t0), f) ≤ 0.5. Let s′, t′ ∈ [0, 1] be such that c(s′) = e
and c(t′) = f , then we have in this case that l(c|[s′,t′]) = d(c(s), c(t)) +
2. Thus we can shorten p′ such that it begins in e, moving us in
the situation of the first case. See Figure 4 for an illustration of the
situation in this case.
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2.3) 1 < d(c(s0), e) + d(c(t0), f) < 1.5. In this case we can move p′ such
that it begins in c(s) and we are again in case 1.1).

2.4) 0.5 < d(c(s0), e) + d(c(t0), f) ≤ 1. In this case we can move p′ such
that it begins in e. Then either both ends of p′ are vertices or we are
in the situation of case 1.1).

p
c(0) = c(1)

c(s)

c(t)

c(s0)

c(t0)

e

f

p′

Figure 4: A shortcut in a hyperbolic graph. We are in case 2.2) in the proof
of Lemma 2.8 and can shorten p′ such that it begins in e.

Theorem 2.9 (Hyperbolic groups have a solvable Word Problem). Let G
be a hyperbolic group, then G admits a finite Dehn presentation as defined
in Definition 2.3, hence Dehn’s Algorithm applies and G has a solvable word
problem.

Proof. Let the Cayley graph CS(G) of G w.r.t. a finite generating set S
be δ-hyperbolic (without loss of generality we may assume that δ is an
integer, by increasing δ if necessary) and let k be an integer satisfying k >
8δ + 1. Following the proof of the preceding Lemma, every closed loop c in
CS(G) (labelled with a word w which represents the identity in G) contains
a subpath p′ beginning and ending at vertices with l(p′) ≤ k which is not
geodesic. Let u be the subword of w labelling p′. Let p be a geodesic with
same endpoints as p′ as stated in Lemma 2.8 and let v be the word labelling
p. The lemma states that l(p) ≤ l(p′)− 1, thus |v| < |u|.

Now we can obtain a Dehn presentation 〈S | R〉 by defining R as the
set of words uiv

−1
i , where ui varies over all words with length of at most k

in the generators and their inverses and vi is a word of minimal length that
is equal to ui in G.

It remains to show that 〈S | R〉 is indeed a presentation of G. Clearly, R
is constructed in a way such that if w ∈ F (S) represents the identity in G,
so it does in 〈S | R〉. So let w ∈ F (S) be a word such that w = 1 ∈ 〈S | R〉.
This means that w can be reduced to the empty word by applying finitely
many relations R1, . . . Rn ∈ R. But these relations all have the form uiv

−1
i
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where ui = vi in G, so R1, . . . , Rn are relations in G and we can apply these
in G to obtain the identity.

This does not only solve the Word Problem for hyperbolic groups, but
we can also see that hyperbolic groups are always finitely presentable, since
they admit to a Dehn presentation. Indeed it can be shown that a group is
hyperbolic if and only if it admits a finite Dehn presentation. This needs
some new ideas, namely a coarse notion of area in Cayley graphs. One can
show that a group is hyperbolic if and only if it satisfies a linear isoperimetric
inequality, i.e. the area (in this coarse sense) covered by a loop is bounded
from above by a linear function depending on the length of the loop, the
perimeter of this area. If a group admits to a Dehn presentation, then one
can conclude that a linear isoperimetric inequality holds. This however goes
beyond the scope of this thesis and we refer the reader to [BH09] for an
extensive treatment of this subject.

We will now turn to the solution of the Transformation Problem in hy-
perbolic groups. To this end we will use the established solution of the Word
Problem in hyperbolic groups.

2.2 Solving the Conjugacy Problem in hyperbolic groups

In this section two solutions to the Conjugacy Problem of hyperbolic groups
will be given. The first one is a straightforward result of hyperbolicity,
however it yields a very inefficient algorithm. For this purpose it is useful
to introduce another characterization of hyperbolicity. Since some further
geometric consequences of hyperbolicity already were discussed, another,
more efficient solution will also be presented.

Definition 2.10 (Quasi-monotone conjugacy property). A group G with
finite generating set S is said to have the quasi-monotone conjugacy property
(q.m.c. property) if there is a constant K > 0 (the q.m.c.-constant), such
that whenever two words u, v ∈ F (S) are conjugate in G, one can find a
word w = a1 · · · an in letters of S such that

w−1uw = v and d(1, w−1
i uwi) ≤ K max {|u|, |v|}

for i = 1, . . . , n and wi = a1 · · · ai.

Algorithm 2.11 (Algorithm to determine conjugacy). Let G be a group
having a finite generating set S ⊂ G, a solvable Word Problem and the
q.m.c. property. Let K be the q.m.c.-constant as defined above.

For each n > 0 let B(n) be the set of words in F (S) that have a length of
at most n. Since G has a solvable Word Problem, given two words v1, v2 ∈
B(n), one can decide if there exists a ∈ S±1 such that a−1v1a = v2 in G; if
it exists write v1 ∼ v2.
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Now consider the finite graph G(n) with vertex set B(n) that has an
edge joining v1 to v2 if and only if v1 ∼ v2. By the q.m.c. property two
words u and v are conjugate in G if and only if u and v lie in the same
pathconnected component of G(n), where n = K max {|u|, |v|}. This allows
us to decide whether u and v represent conjugate elements of G.

We will show that hyperbolic groups have the q.m.c. property. To intro-
duce the new notion of hyperbolicity, we give the following two definitions,
which highlight some properties of triangles in general metric spaces.

Definition 2.12 (Gromov product). Let (X, d) be a metric space and let
x ∈ X. Then the Gromov product of y, z ∈ X w.r.t. x is defined to be

(y · z)x =
1

2
(d(y, x) + d(z, x)− d(y, z))

Definition 2.13 (Tripods in triangles). If (X, d) is a metric space and one
is given three points x, y, z ∈ X, then there are non-negative numbers a, b
and c such that d(x, y) = a + b, d(x, z) = a + c and d(y, z) = b + c. These
are uniquely determined.

Proof. Let a′, b′, c′ ∈ R positive numbers such that

d(x, y) = a+ b = a′ + b′

d(x, z) = a+ c = a′ + c′

d(y, z) = b+ c = b′ + c′.

Using the Gromov product we see that

a = (y · z)x = a′

b = (x · z)y = b′

c = (x · y)z = c′.

Let ∆ := ∆(x, y, z) ⊂ X be a geodesic triangle and let a, b, c ∈ R as
above. Then we can compare ∆ to a metric tree T∆ := T (a, b, c) which
has three vertices vx, vy, vz of valence one and one vertex o of valence three,
and the edges connecting o to vx, vy and vz having length a, b and c respec-
tively. This enables us to define a map χ∆ : ∆ → T∆, which maps x, y, z
to vx, vy, vz in the obvious way and extends to sides of the triangle, such
that the restriction to a side is an isometry; one can think of collapsing the
triangle onto the tripod (see Figure 5).

Note that the preimage χ−1
∆ (t) consists of at most two points (less in

the case ∆ is degenerated to a line) for t 6= o and of at most three points
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{ix, iy, iz} = χ−1
∆ (o), where ix ∈ [y, z], iy ∈ [x, z] and iz ∈ [x, y] such that

d(ix, y) = b d(ix, z) = c

d(iy, x) = a d(iy, z) = c

d(iz, x) = a d(iz, y) = b.

These points are uniquely determined because ∆ is geodesic and we call
them internal points of ∆.

x
y

z

ixiy

iz

a

a
b

b

cc

a

b

c

vx

vy

vz

o

Figure 5: A geodesic triangle ∆ = ∆(x, y, z) on the left, with internal points
ix, iy and iz. On the right the tripod T∆, which is obtained from ∆ under
the map χ∆. One can think of collapsing the internal points to o.

We now introduce the concept of thin triangles, by measuring the thick-
ness of a fiber χ−1

∆ (t) of the tripod associated to a triangle.

Definition 2.14 (Thin triangles). Let ∆ be a geodesic triangle in a metric
space (X, d) and consider the map χ∆ : ∆→ T∆ as defined above. Then ∆
is said to be δ-thin for a δ ≥ 0, if p, q ∈ χ∆

−1(t) implies that d(p, q) ≤ δ for
all t ∈ T∆.

Given a geodesic triangle ∆(x, y, z) in a metric space (X, d) and a point
p on one of the sides, say γ1, the advantage of this definition over the notion
of slim triangles is that we have more information over the position of a
point q in the union of the other two sides, say q ∈ γ2 with d(p, q) ≤ δ. We
know that if q has the same image as p under χ∆, then p and q have the
same distance to the vertex belonging to γ1 and γ2.

Clearly, a triangle that is δ-thin is also δ-slim. The following lemma
shows that the converse holds.

Lemma 2.15 (Slim triangles are thin). Let (X, d) be a δ-hyperbolic space.
Then there exists δ′ ≥ 0 only depending on δ, such that every geodesic
triangle ∆ := ∆(x, y, z) with vertices x, y, z ∈ X is δ′-thin.
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Proof. Let ix, iy, iz be the internal points of ∆.
First we show that d(ix, iy) ≤ 2δ, d(ix, iz) ≤ 2δ and d(iy, iz) ≤ 2δ.

Because ∆ is δ-slim, we have that d(ix, [x, y] ∪ [x, z]) ≤ δ, with [x, y] and
[x, z] being the respective sides of ∆, i.e. there exists a point p ∈ [x, y]∪ [x, z]
such that d(ix, p) ≤ δ, say p ∈ [x, y]. By the reverse triangle inequality we
have

δ ≥ d(ix, p) ≥ |d(y, p)− d(y, ix)|.

Both ix and iy are internal points of ∆, so we have d(y, ix) = d(y, iz) and
since iz and p lie on the same geodesic segment, we have

δ ≥ |d(y, p)− d(y, iz)| = d(p, iz).

Consequently d(ix, iz) ≤ d(ix, p) + d(p, iz) ≤ 2δ. If p ∈ [x, z] instead of [x, y]
we can run the same argument and obtain d(ix, iy) ≤ 2δ. Analogous we have
that d(iz, {ix, iy}) ≤ 2δ and the triangle inequality yields that the distance
between two internal points of ∆ is at most 4δ.

Now we show that ∆ is δ′-thin. Let s ∈ T∆ and p, q ∈ χ−1
∆ (s), say

p ∈ [y, z] and q ∈ [x, y]. We have to show that d(p, q) ≤ δ′ for some δ′. To
this end, let c : [0, 1]→ X be a monotone parametrization of [y, z], such that
c(0) = y and c(1) = z. Consider the geodesic triangle ∆t := ∆(x, y, c(t)). As
one varies t, the internal point of ∆t on the side [y, c(t)] varies continuously
as function of t, being ix for t = 1 and y for t = 0. Then there exists t0 such
that the internal point of ∆t0 on the side [y, c(t0)] is p. Since d(y, p) = d(y, q)
then q is also internal point of ∆t0 and we have shown in the first step that
d(p, q) ≤ 4δ. Clearly the same argument can be applied to any other s ∈ T
and pair of points p, q ∈ χ−1

∆ (s). This completes the proof and shows that
∆ is δ′-thin for δ′ = 4δ.

This notion of hyperbolicity now allows us to show that hyperbolic
groups have the q.m.c. property.

Lemma 2.16 (Hyperbolic groups have the q.m.c. property). Let G be a
δ-hyperbolic group for δ ≥ 0 with finite generating set S ⊂ G. Then G has
the quasi-monotone conjugacy property.

Proof. Let u, v ∈ G be conjugate elements and w = s1 · · · sn a geodesic word
(i.e. a word whose path in CS(G) is a geodesic) in generators si ∈ S±1 such
that w−1uw = v, and let be wi = s1 · · · si. Then we have by left-invariance
of the word metric d that

d(1, v) = d(1, w−1uw) = d(w, uw)

d(1, w−1
i uwi) = d(wi, uwi).

Consider the quadrilateral in the Cayley graph of G with vertices 1, w,
u and uw (note that uw = wv), as well as two sides labelled with w, and
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two sides labelled with u and v respectively. Dividing it with the geodesic
connecting 1 to uw = wv we obtain two triangles (see Figure 6). Now
Lemma 2.15 tells us that there is a point p ∈ [1, u] such that d(p, uwi) ≤ δ′

for δ′ = 4δ. Similarly, by dividing the quadrilateral with the geodesic [u,w],
we obtain another set of triangles, for which we get a point p′ on [1, u]
such that d(p′, wi) ≤ δ′ by the δ′-thin condition. Both p and p′ lie on
[1, u], so their distance is at most |u|. The triangle inequality tells us that
d(wi, uwi) ≤ 2δ′|u|. Analogous we can first divide the quadrilateral with
[u,w] to obtain a point q ∈ [w, uw = wv] such that d(uwi, q) ≤ δ′ and then
dividing the quadrilateral with [1, uw = wv] yields q′ ∈ [w, uw = wv], such
that d(wi, q

′) ≤ δ′. Again we can estimate the distance between wi and uwi
to be at most 2δ′|v|. Thus G has the q.m.c. property with q.m.c.-constant
K := 2δ′.

p

δ′

p′
δ′

q′
δ′

q

δ′

1

u
uwi uw = wv

w
wi

|u| |v|

Figure 6: The quadrilateral in the Cayley graph of G and the dividing diago-
nals, indicated by dotted lines, for application of the thin-triangle condition
in the proof of Lemma 2.16.

Theorem 2.17 (Hyperbolic groups have a solvable Conjugacy Problem).
Let G be a hyperbolic group. Then G has a solvable Transformation prob-
lem.

Proof. The preceding lemma shows that G has the q.m.c. property, hence
Algorithm 2.11 can be applied.

This gives us a solution to the Conjugacy Problem in hyperbolic groups.
However, this algorithm is very inefficient, because we have to check for
pathconnected components in a graph whose vertex set grows exponential
with the length of the word. Using the results established in Section 1,
we can obtain a more efficient algorithm. The following consequence of
Lemma 1.13 and Proposition 2.6 will help us.
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Corollary 2.18. Let X be a δ-hyperbolic geodesic space. There is a con-
stant C, depending only on δ, such that if the sides of a quadrilateral
Q ⊂ X are all (8δ + 1)-local-geodesics, then every side of Q lies in the
C-neighbourhood of the union of the other three sides.

Proof. Using 2.6, we see that Q is a (λ, ε)-quasi-geodesic quadrilateral, with
ε and λ only depending on δ as stated in the proposition. Dividing Q with
a (λ, ε)-quasi-geodesic diagonal, we obtain two quasi-geodesic triangles. By
Corollary 1.14 we know that there exists M only depending on δ, ε, λ such
that every (λ, ε)-quasi-geodesic triangle in X is M -slim. Application of
the M -slim condition to the quasi-geodesic triangles yields that each side
is contained in the C-neighbourhood of the union of the other three sides,
for C ≥ 2M . According to Lemma 1.13 ε and λ only depend on δ, so M
depends only δ. It follows that C depends only on δ.

The following lemma can be seen as a more strict version of the q.m.c.
property, where the constant is independent of the length of two words
representing conjugate elements u and v.

Lemma 2.19. Let G be a δ-hyperbolic group w.r.t. a finite generating set
S. Then there is a constant K > 0 only depending on δ such that: If
u, v ∈ F (S) represent conjugate elements of G and if u, v and all their cyclic
permutations are (8δ + 1)-local geodesics, then either

(1) max {|u|, |v|} ≤ K

(2) There exists w ∈ F (S) with length of at most K such that w−1u′w = v′

in G, where u′, v′ are cyclic permutations of u and v.

Proof. Let be w ∈ F (S) such that wuw−1 = v. Consider the geodesic
quadrilateral Q in CS(G) with sides labelled w, u,w−1, v−1. By replacing
u, v with cyclic permutations if necessary, we may suppose that each vertex
on the top side of Q has at least distance |w| from each vertex on the bottom
(see Figure 7).

v2 v1

w

u2 u1

w w

v1 v2

u1 u2

Figure 7: We can rearrange the conjugacy diagramm such that each vertex
on the top has at least distance |w| from each vertex on the bottom.

Consider the midpoint p of the top side, then its distance to the other
sides is at most C, as shown in Corollary 2.18. If there is a point p′ on the
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bottom side such that d(p, p′) ≤ C, then the distance of the vertices closest
to p and p′ would be at most C + 1. If |w| > C + 1 this can not happen and
in this case we have bounded |w| from above with C + 1.

Suppose that p has distance of at most C to a point q on a vertical side
and let x, y be the top and bottom vertices of this side. We now have that
|w| − 1

2 ≤ d(p, y) ≤ C + d(q, y) and d(q, y) = |w| − d(x, q). It follows that

d(q, y) = |w| − d(x, q) ≤ C + d(q, y) +
1

2

⇔ d(x, q) ≤ C +
1

2
.

The triangle inequality now yields

d(p, x) ≤ d(p, q) + d(x, q) ≤ 2C +
1

2
.

Because p was chosen to be the midpoint of the top side, we have that
d(p, x) = 1

2 |u| and we can bound u from above with 4C + 1. Similarly, if
|w| > C+ 1 we have that |v| ≤ 4C+ 1, so K = 4C+ 1 fulfills the statements
in the lemma.

Algorithm 2.20 (Algorithm to determine conjugacy in hyperbolic groups).
Let G be a group that is δ-hyperbolic w.r.t. a finite generating set S. Given
two words u, v in letters of S±1, look at u, v and their cyclic permutations to
find non geodesic subwords with length of at most 8δ+ 1. If such a subword
is found, then replace it by a geodesic word representing the same group
element in G.

Repeat this until u, v and all their cyclic permutations are 8δ + 1-local
geodesics (working with cyclic words, this requires the application of less
than |u|+ |v| relations from a Dehn presentation of G).

Lemma 2.19 provides a finite set Σ of words, such that u is conjugate
to v in G, if and only if w−1u′w = v′ in G for some w ∈ Σ. Using Dehn’s
algorithm, we can decide whether one of the relations is valid in G.

A possible choice for Σ would be the set of words with length of at mostK
with K as in the preceding lemma, together with a choice of one conjugating
element for each pair of conjugate elements u0, v0 with max {|u0|, |v0|} ≤ K.

Notice that this algorithm is more efficient than the previous one, since
the set of possible candidates for conjugating elements does not depend on
the length of u and v.
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3 Morse functions on affine cell complexes

While the Cayley graph (which is a one dimensional complex) of a group
already encodes many of its geometric features, one can use higher dimen-
sional complexes to examine a group with topological machinery. In this
section the definition of the Cayley 2-complex or presentation 2-complex of a
group presentation will be given. This is a space which has the given group
as fundamental group and its underlying structure is a cell complex, which
we will define below.

Definition 3.1 (Cell complex). A space X constructed in the following
way is called a cell complex or a CW complex. A k-cell ek is a topological
space that is homeomorphic to a k-disk Dk. Note that its boundary ∂ek is
homeomorphic to the (k − 1)-sphere Sk−1. We call k the dimension of the
cell ek. A cell complex or a CW complex X is a space obtained by gluing a
collection of cells together as follows:

(1) We start with a countable set X0, the 0-skeleton of X . Its points are
homeomorphic to 0-disks and henceforth regarded as 0-cells.

(2) Inductively we obtain the n-skeleton Xn from Xn−1 by attaching n-
cells enα via homeomorphisms ϕ : ∂Sn−1 → Xn−1. This means that
Xn is the quotient space of the disjoint union Xn−1

⊔
αD

n
α of Xn−1

with a collection of n-disks Dn
α under the identifications x ∼ ϕα(x) for

x ∈ ∂Dn
α. Thus as a set Xn = Xn−1

⊔
α e

n
α where each enα is an open

n-disk.

(3) One can either stop this inductive process at a finite stage, setting X =
Xn for some n < ∞, or one can continue indefinitely, setting X =⋃
nX

n. In the former case X is then a n-dimensional complex and we
let dim(X) = n denote its dimension, whereas in the latter case X is
said to have infinite dimension. If dim(X) = ∞, X is given the weak
topology: A set A ⊂ X is open (or closed) if and only if A∩Xn is open
(or closed) in Xn for each n.

This definition is adapted from [Hat02], where also some further topolog-
ical properties of cell complexes are discussed. The name CW complex stems
from two properties: On one hand, cell complexes exhibit closure finiteness,
i.e. the closure of one cell meets only finitely other cells. On the other hand,
cell complexes have the weak topology, which means that a set is closed if
and only if it meets the closure of each cell in a closed set. Furthermore
cell complexes are normal and in particular Hausdorff. This shows that cell
complexes are in a way well-behaved, although the definition might seem a
bit wild at first glance. We do not rely on these properties and refer the
reader for the proof of these to [Hat02].
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However, for introducing Morse theory, we need to endow cell complexes
with an affine structure. To this end, we give the definition of a convex cell,
then the definition of affine cell complexes.

Note that we refer to affine hyperplanes simply as hyperplanes and to
affine half-spaces as half-spaces.

Definition 3.2 (Convex cell). A convex (polyhedral) cell C ⊂ Rm for some
m ∈ N \ {0} is a compact intersection of finitely many closed half-spaces
H1, . . . ,Hk. The dimension dim(C) of C is the dimension of the affine
subspace spanned by C.

Each half-space can be described by a linear inequality and thus C is
the solution of these inequalities. If we change some of these inequalities
to equalities, we call a solution a face of C. Trivially a face F of C also a
convex cell. The intersection of two or more faces is again a face of C. If
F = ∅ or F = C, F is called an improper face of C, else F is called a proper
face of C. Unless specified otherwise, all faces we consider are proper. If F
consists of only one point, we call F a vertex of C.

Similar to a convex polyhedral cell, we can define a spherical cell C ⊂
Sm−1. Instead of a intersection of half-spaces, we use hemispheres and for
the definition of the dimension we use the smallest dimension of a sphere
containing C.

Definition 3.3 (Affine cell complex). A finite-dimensional cell complex X is
said to be an affine cell complex if it is equipped with the following structure:
Let m be an integer with m ≥ dim(X). For each cell e ∈ X we are given a
convex polyhedral cell Ce ⊂ Rm and a characteristic function χe : Ce → e
such that the restriction of χe to any face of Ce is a characteristic function
of another cell, possibly precomposed by a partial affine homeomorphism
(i.e. a restriction of an affine homeomorphism of Rm). This basically means
that the intersection of two cells is either a face of both of these cells or
empty. An admissible characteristic function for a cell e ∈ X is any function
obtained from χe by precomposition with a partial affine homeomorphism.
This allows us to choose isometries as admissible characteristic functions
and we can think of gluing cells along faces by isometries.

The terminology is quite technical and the following might be helpful
to get a better understanding of affine complexes: Let X be an affine cell
complex. Given an n-dimensional cell e ∈ X, the characteristic function
χe : Ce → e is the following composition of continuous functions:

Ce → Dn
e ↪→ Xn−1

⊔
α

enα → Xn ↪→ X.

Definition 3.4. Similarly one can define a spherical complex, where one uses
spherical cells instead of polyhedral cells, and spherical isometries precom-
posed by restrictions of homeomorphisms. For convenience, we will reserve
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the term convex cell to polyhedral cells, albeit spherical cells are also convex
in the spherical metric.

Definition 3.5 (Presentation 2-complex). To any presentation 〈S | R〉 of
a group G one can associate the presentation 2-complex K = K(S | R).
The complex K consists of one vertex v and one edge εa for each a ∈ S,
oriented and labelled a. Let ε−1

a denote the edge εa traversed backwards; we
assume that ε−1

a = εa−1 . Thus a word w ∈ F (S), w = a1 · · · an corresponds
to the edge loop that is a concatenation of the edges labelled a1, . . . , an.
Additionally, one has for each relation r ∈ R, r = a1 · · · an ∈ F (S) one 2-cell
er, which is attached along the loop labelled a1 · · · an. The map that sends
the homotopy class of εa to a ∈ G gives an isomorphism π1(K(S | R), v) ∼=
G.

The universal cover of this complex K is a Cayley complex whose 1-
skeleton is the Cayley graph of the group.

Now that we can construct a 2-complex from a given presentation of a
group, we give an introduction to Morse theory on cell complexes.

Definition 3.6 (Morse function). Let X be an affine cell complex. A func-
tion f : X → R is called a Morse function, if for each cell e ∈ X fχe : Ce → R
extends to an affine map Rm → R and is constant if and only if dim e = 0,
and the image of the 0-skeleton under f is discrete in R.

If J ⊂ R is a closed, nonempty subset, we define XJ := f−1(J) and for
a single point t ∈ R we write Xt := X{t}. We call Xt the t-level set of the
Morse function f .

To build an intuition it is useful to imagine holding a cell by one vertex
and letting it hang freely. Then the height function is a Morse function
restricted to this cell. See Figure 8 for an affine cell complex X and a typical
Morse function f given by the height. We see three level sets, Xt0 , Xt1 and
Xt2 , indicated by the dashed lines.

Note that t0 and t2 are not in the image of the 0-skeleton of X under
f . We see that there is a small neighbourhood I = (t0 − ε, t0 + ε) of t0 and
J = (t2− ε′, t2 + ε′) such that XI is homeomorphic to Xt0 × (−ε, ε) and XJ

is homeomorphic to Xt2 × (−ε′, ε′). However when t0 or t2 approaches t1,
which is in the image of the 0-skeleton of X under f , a change in homotopy
occurs, since the level set X1 through v is contractible, while Xt0 and Xt2

are not. To obtain a more precise description of this change, we need the
following definitions.

Definition 3.7 (Circle-valued Morse function). A function f : X → S1 on
an affine complex is called a circle-valued Morse function if it is a cellular
map (i.e. we endow S1 with a cell structure by designating points on the
circle as vertices and the connecting segments as edges) and lifts to a Morse
function between universal covers.
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v

R

t0
t1
t2

f

Figure 8: A cell complex X and a real valued Morse function f , given by the
height of the cell. Three level sets Xt0 , Xt1 and Xt2 are indicated by dashed
lines. Varying t0 or t2 by a small value does not change the homotopy type
of the respective level set. A change in the homotopy type only occurs when
there is a vertex in the level set, such as v.

Definition 3.8 (Links). Let C ⊂ Rm be a convex n-cell. The link Lk(v, C)
of a vertex is the collection of all unit tangent vectors at v, pointing into C.
This is a spherical cell of dimension (n− 1). If C ′ is another cell, to which
C is glued by an isometry f and v′ is a vertex which gets identified under f
with v, then the derivative of f gives us an isometry on the tangent spaces,
which identifies a face of Lk(v, C) with a face of Lk(v′, C ′). Thus in an affine
complex X, the link of a vertex v is a spherical complex, which we denote
with Lk(v,X).

This definition gives us a practical way to see how a vertex is attached or
linked to a cell. On simplicial complexes the definition of a link is canonically,
but on more general complexes this definition is not always practical. There
are several ways to define the link of a vertex, however the distinguishing
feature is that when the vertex is removed, one can obtain a homotopy
equivalent space by coning off the link or its copy in the cell. With the
given definition, we always have a natural homeomorphic copy of the link in
the cell itself. We can see this copy by using the fact that the cell lives in
some Rm and identify the tangent space with Rm itself, and scale down the
link such that the vectors do not leave the cell.

Definition 3.9 (Ascending and descending links). Suppose X is an affine
cell complex and f : X → S1 is a circle-valued Morse function. Choose an
orientation of S1 which lifts to one of R and lift f to a map of universal
covers f̃ : X̃ → R. Let v ∈ X(0) and note that the link of v in X is naturally
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isomorphic to the link of any lift ṽ in X̃. We say a cell ẽ ⊂ X̃ contributes
to the ascending (respectively descending) link of ṽ ∈ ẽ, if f̃ |ẽ achieves its
minimum (respectively maximum) value at ṽ. The ascending link Lk↑(v,X)
(respectively descending link Lk↓(v,X)) is the subset of Lk(v,X) naturally
identified with the ascending (respectively descending) link of ṽ.

Revisiting Figure 8, we see that the ascending link Lk↑(v,X) of the
vertex v is a 0-sphere. Its copy in Xt0 are the two thicker square vertices
above v. The level set through v is homotopy equivalent to Xt0 with the
copy of the link coned off. Similarly, we see that Lk↓(v,X) is homeomorphic
to a circle and its copy is indicated by the thick dashed lines in the figure.
Again, coning off this copy of the descending link in Xt2 makes it homotopy
equivalent to the level set Xt1 . We will formalize this process in the Morse
Lemma, whose proof relies on the following observation.

Observation 3.10. Let C ⊂ Rm be a convex cell in Euclidean space, F , G
disjoint (proper) faces with F top-dimensional. Then any strong deforma-
tion retraction from ∂C \ F to G extends to a strong deformation retraction
from C to G. In particular ∂C \ F is a strong deformation retract of C.

Proof. We show that ∂C \ F is a strong deformation retract of C. Let
H1, . . . ,Hl+1 be the half-spaces corresponding to the top-dimensional faces
of C, such that C =

⋂l+1
i=1Hi and without loss of generality let Hl+1 be the

half-space corresponding to F . Then C ′ :=
⋂l
i=1Hi is also convex (albeit

not necessarily a cell, but a cone) and because F is top-dimensional, C ′ \C
is not empty.

Now we can construct a strong deformation retraction f : C× [0, 1]→ C
of C onto ∂C \ F . Choose a coordinate system of Rm such that the origin
lies in C ′\C. Let x ∈ C and ex be the unit vector spanning the 1-dimensional
subspace in which x lies. Then exR∩ ∂C \ F = {vx}. We define f to be the
following map

(x, t) 7→ x+ t‖vx − x‖vx,

where ‖ · ‖ denotes the Euclidean norm on Rm.
This strong deformation retraction can be thought of as the radial pro-

jection of C onto ∂C \ F , where we chose the coordinate system of Rm such
that the light source lies in the origin.

We can now turn to the Morse Lemma. At first we wish to establish
the fact that the homotopy type of a level set Xt does not change for small
pertubations of t, if t is not in the image of the 0-skeleton of the cell complex
X. Then we will prove the Morse Lemma, which describes how attaching
cones to the copy of the ascending or descending link of a vertex in a level
set conveys a homotopy equivalence to the level set containing the vertex.
The proofs of the following lemma and the Morse Lemma are adapted from
[BB97].
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Lemma 3.11. Let X be a n-dimensional affine cell complex and f : X → R
a Morse function. If J ⊂ J ′ ⊂ R are non-empty, connected and XJ ′ \ XJ

contains no vertices of X, then XJ ↪→ XJ ′ is a homotopy equivalence.

Proof. For each cell e ∈ X and each admissible characteristic function
χe : Ce → X we construct a strong deformation retraction Hχe

t = χ−1
e Hχe

of Ce∩ (fχe)
−1(J ′) to Ce∩ (fχe)

−1(J) admitting to the following naturality
properties:

(1) If Xe is precomposed by a partial affine homeomorphism h, then Hχe
t is

conjugated by h, i.e. Hχe
t
h

= h−1Hχe
t h

(2) The restriction ofHχe
t to a face of Ce is the strong deformation retraction

associated to that face.

Note that Y := XJ ′ \XJ inherits an affine cell structure from X. Assume
that sup J = supJ ′ and let t := inf J , t′ := inf J ′.

Since Y contains no vertices of X, for each cell e of Y and admissible
characteristic function χe : Ce → X the sets Fe := χ−1

e (Xt ∩ e) and Ge :=
χ−1
e (X ′t∩e) are top-dimensional faces. This allows us for each cell e ∈ Y (n) to

retract Ce onto ∂Ce \ Fe, as shown in Observation 3.10. This is the (n− 1)-
skeleton Y (n−1) of Y and the retraction defines for each cell e ∈ Y (n) the
strong deformation retraction Hχe

t |C̊e
restricted to the interior C̊e := C \∂C

of Ce, possibly conjugated with a partial affine homeomorphism h according
to the first naturality property.

Repeating this process in inductively on the (i − 1)-skeleton of Y , af-
ter having it performed on Y (i), gives us for each cell e and characteristic
function χe a strong deformation retraction Hχe

t of Ce ∩ (fχe)
−1(J ′) to

Ce ∩ (fχe)
−1(J). In each step we only retract the interior of a cell, leaving

the boundary intact. This ensures that the strong deformation retraction
of a cell is compatible with the strong deformation retraction of an adja-
cent cell, since the gluing happens by identifying faces, i.e. cells lying in the
boundary. Thus the second naturality property is also satisfied.

For the general case observe that depending on whether sup J = sup J ′

or inf J = inf J ′, Y consists of either one or two disjoint cell complexes, one
possibly lying above the level set of sup J (from perspective of the Morse
function f) and one possibly lying below the level set of inf J . Clearly we can
use the same construction for cells lying above supJ , with the intersection
of a cell e with the (supJ)-level set defining Ge and likewise the intersection
of e with the (supJ ′)-level set defining Fe.

These strong deformation retractions induce a strong deformation from
XJ ′ to XJ , therefore the inclusion XJ ↪→ XJ ′ is a homotopy equivalence.

Proposition 3.12 (Morse Lemma). If f : X → R is a Morse function,
J ⊂ J ′ ⊂ R are closed intervals with inf J = inf J ′ and J ′ \ J contains only
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one point r of the image of the 0-cells under f , then f−1(J ′) is homotopy
equivalent to f−1(J) with the copies of Lk↓(v,X) (v a vertex with f(v) = r)
coned off. A similar statement holds when inf J = inf J ′ is replaced by
sup J = sup J ′ and Lk↓(v,X) by Lk↑(v,X).

Proof. Since XJ ′∩(−∞,r] ↪→ XJ ′ is a homotopy equivalence by Lemma 3.11,
assume that sup J ′ = r and r − ε = sup J .

For any admissible characteristic function χe : Ce → X of any other cell
e we construct, again inductively on dim e, a strong deformation retraction
of (fχe)

−1((−∞, r]) onto the subset

(fχe)
−1((−∞, r − ε]) ∪

⋃
{F |F is a face of Ce with fχe(F ) ⊂ (−∞, r]} ,

satisfying both naturality properties from the proof of Lemma 3.11.
The construction is similar to the one of the preceding lemma, however,

we have to consider what happens if a cell e has a vertex v such that f(v) = r.
First note that if a cell e ∈ X has f |e > r then e is disjoint from XJ ′ . So let
e ∈ Y := XJ ′ \XJ be a cell with f |e ≤ r. If f |e < r, then v 6∈ e and we can,
with the same notation as in Lemma 3.11, retract Ce onto Ge. However,
this cannot be done if v ∈ e with f(v) = r. To prove the assertion about
the copies of the link coned off, note that Ge is homeomorphic to Lk↓(v, e)
and resembles the copy stated in the lemma, and thus e is homeomorphic
to Ge coned off with v.

These strong deformation retractions induce a strong deformation retrac-
tion of XJ ′ onto XJ with the cones attached as stated in the lemma.

4 Morse criterion for free-by-cyclic groups

We now turn to the main theorem of this part of the thesis: A criterion given
in [BRS07] for recognizing free-by-cyclic groups by examining their presen-
tation complexes with a Morse function. Its proof models the presentation
complex as a graph of spaces, which we will now define.

Definition 4.1 (Graph of spaces). A graph of spaces consists of a finite
graph G, a vertex space Xv associated to each vertex v ∈ V (G), an edge
space Xe associated to each e ∈ E(G) and continuous maps fι,e : Xe → Xι(e),
fτ,e : Xe → Xτ(e) for each edge e.

The total space of the graph of spaces is the quotient space of the disjoint
union  ⊔

v∈V (G)

Xv

 t
 ⊔
e∈E(G)

Xe × [0, 1]


under the identifications (x, 0) ∼ fι(e)(x) and (x, 1) ∼ fτ(e)(x) for all x ∈ Xe.

31



Theorem 4.2 (Recognizing free-by-cyclic groups). Let f : X → S1 be
a circle-valued Morse function on the 2-complex X. If all ascending and
descending links in X are trees, then π1(X) is free-by-cyclic.

Proof. We want to look at X as the total space of a graph of spaces. The
circle with one vertex and one edge is a covering space of any cellular config-
uration of the circle, so without loss of generality we may assume that S1 has
only one vertex and only one edge. Now we choose S1 consisting of one vertex
v and one edge to be the underlying graph. For the vertex space we choose
the preimage of the vertex f−1(v) and for the edge space the general point
preimage f−1(S1 \ {v}). The Morse Lemma (Proposition 3.12) states that
the level set through the vertex is homotopy equivalent to the general point
preimage with the ascending respective descending links coned off. These
are trees and as such contractible, and since coning off a contractible space
does not change its homotopy type, it follows that the basepoint preimage
is homotopy equivalent to the general point preimage. Indeed, the maps
from the edge space to the vertex space collapse the subgraphs correspond-
ing to the ascending or descending link in the general point preimage, and
collapsing trees is a homotopy equivalence. Therefore X is homotopy equiv-
alent to a graph bundle over the circle and hence its fundamental group is
free-by-cyclic.

4.1 Application of the Morse criterion to some examples

While the theorems and definitions elaborated in order to state and prove
the Morse criterion seem to be rather daunting, its application to a given
group presentation is not that technical after seeing some examples. It not
only enables us to recognize free-by-cyclic groups, but its proof also yields
a method to determine the automorphism in the F oϕ Z structure and in
particular the rank of the free group F . We will conduct this procedure in
the following examples given in [BRS07], where the first one was used to
demonstrate the usage of Theorem 4.2, however no explicit description of
the automorphisms where given and left as an exercise to the reader.

Example 4.3. G = 〈a, b | abb = baa〉. The corresponding presentation
2-complex consists of one vertex v, two 1-cells labelled a and b and a single
2-cell labelled with the relation.

Suppose we have a homomorphism G→ Z, which maps a to A and b to
B. Then the relation becomes

A+B +B = B +A+A⇔ A = B.

Thus we can assume the homomorphism sends a and b to a generator of
Z. We can realize this homomorphism topologically by a map of the pre-
sentation 2-complex to the circle, with one base vertex and one edge (thus

32



one 0-cell and one 1-cell). The map sends v to the basepoint of the circle
and a as well as b once around the circle. We can extend this map lin-
early over the 2-cell, getting a circle valued Morse function, which lifts to
a Morse function between universal coverings, where we take R to be the
universal cover of the circle. The relator 2-cell lifts to the universal covering
and becomes a hexagon from the perspective of the Morse function, with
one vertex as its maximum point and the diametrically opposite vertex as
its minimum. The two sides are labelled from bottom to top abb and baa
(see Figure 9). Both the ascending and descending link are homeomorphic
to segments connecting the 1-cell labelled a to the 1-cell labelled b, thus are
trees. The Morse criterion for free-by-cyclic groups (Theorem 4.2) states
that G is free-by-cyclic.
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v
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v
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b
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Figure 9: The relator cell from universal cover perspective for G =
〈a, b | abb = baa〉 in Example 4.3 on the left, with the generic point preimage
C and the vertex preimage D on the right.

Looking at the basepoint preimage of the Morse function, we see the
segments labelled s and t, which form a rose with two petals and base point
v (D in the picture). The Morse Lemma tells us that the base point preimage
D is homotopy equivalent to the generic point preimage C with the copies of
the ascending respective descending link coned off. Let x denote the point
where a segment of the general point preimage meets an edge labelled a and
let y denote the point where a segment meets an edge labelled b. Coning off
the links does not change the homotopy type, because the links are trees, so
C and D are homotopy equivalent and we can conclude that G = F2 oϕ Z.

We wish to determine the automorphism ϕ which defines the conjugation
in the semidirect product. To this end we take, under abuse of notation,
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s and t to be the homotopy-equivalence classes of s and t as generators of
F2. The proof of Theorem 4.2 shows that G is the fundamental group of the
graph of spaces with the circle being the underlying space, the base point
preimage D being the vertex space at the basepoint and the general point
preimage C being the edge space. Fixing a generator of the free group and
moving around the circle gives us a homotopy equivalence, which induces a
automorphism on the free group.

To obtain a precise description of this automorphism, we choose an ori-
entation of the edges as shown in Figure 9. Looking at the general point
preimage and approaching the base vertex in the circle collapses an edge in
the preimage and sends other edges to s and t. We can read this homotopy
equivalence off by sliding the edges in the relator cell up or down, where each
direction corresponds to a direction from which we can approach the base
point in the circle. We call these homotopy equivalences H↓ : C → D and
H↑ : C → D accordingly. This results in the following homotopy equiva-
lences, where we write e−1 to denote that the edge e is traversed in opposite
direction:

H↓ :p 7→ s−1 H↑ :p 7→ v

q 7→ t−1 q 7→ s−1

r 7→ v r 7→ t

Conversely, if we are at the base point of the circle and move in one direction
into the edge space, the edges which have been collapsed by H↓ and H↑ are
expanded accordingly, which gives us the following description of H−1

↓ and

H−1
↑ :

H−1
↓ :s 7→ rp−1 H−1

↑ s 7→ pq−1

t 7→ rq−1 t 7→ rp−1

We choose x to be the basepoint for the fundamental group of C. Then
these homotopy equivalences induce isomorphisms π1(C, x)→ π1(D, v) and
π1(D, v)→ π1(C, x) respectively. Precomposing one with the inverse of the
other gives us the automorphism ϕ : π1(D, v) = F2 → π1(D, v) in the
semidirect product, which is topologically realised by moving a generator
around the circle in one direction. Thus we arrive at the following description
of ϕ:

ϕ = H↓ ◦H−1
↑ :s 7→ s−1t

t 7→ s

ϕ−1 = H↑ ◦H−1
↓ :s 7→ t

t 7→ ts
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Example 4.4. G = 〈a, b | aba = bab〉. Again the corresponding presentation
2-complex consists of one vertex v, two 1-cells labelled a and b and a single
2-cell attached along the 1-cells according to the relation.

Suppose we have a map G→ Z that maps a to A and b to B. Then the
relation becomes

A+B +A = B +A+B ⇔ A = B.

So we can assume that the map takes a and b to a generator of Z. We realize
this map topologically by a map of the presentation 2-complex to the circle
with one base vertex and one edge. As in Example 4.3, the map sends v
to the basepoint and both a and b once around the circle. Extending this
map linearly over the 2-cell, we obtain a circle valued Morse function, which
lifts to a Morse function between universal coverings, where we take R to
be the universal covering space of the circle. From the perspective of the
Morse function, the relator 2-cell becomes a hexagon similar to that in the
Example 4.3, with one side labelled aba and the other one labelled bab.

v

v

v

v

v

v

a

b

a

b

a

b

r

q

p

t

s

Lk↑

Lk↓

p

q

r

x y

C

s tv

D

Figure 10: The relator cell from universal cover perspective for G =
〈a, b | aba = bab〉 in Example 4.4 on the left, with the generic point preimage
C and the vertex preimage D on the right.

As we can see in Figure 10, both the ascending and descending links are
homeomorphic to single segments connecting the 1-cells labelled a and b and
thus are trees and G is free-by-cyclic by Theorem 4.2.

The base point preimage D of the Morse function is a rose with two
petals, labelled s and t, which we take as generators of the free group.
Again the Morse Lemma tells us that D is homotopy equivalent to C with
the copies of the ascending respective descending link coned off — these
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are trees, hence C and D are homotopy equivalent and it follows that G =
F2 oϕ Z. Moving the generic point preimage C towards the base point of
the circle again collapses one edge, which can be read off the 2-cell as seen
in Example 4.3. Again we let x denote the point where a segment in the
generic point preimage meets an edge labelled a and y denote the point
where an edge labelled b is met. With the orientations and notation as
chosen in Figure 10, we arrive at the following description of the homotopy
equivalences H↓ : C → D and H↑ : C → D:

H↓ :p 7→ s H↑ :p 7→ v

q 7→ t−1 q 7→ s−1

r 7→ v r 7→ t

The inverses of these homotopy equivalences are again given by expanding
the edges that got collapsed:

H−1
↓ :s 7→ pr−1 H−1

↑ :s 7→ pq−1

t 7→ rq−1 t 7→ rp−1

Precomposing one homotopy equivalence with the inverse of the other, this
gives us the following description of the automorphism ϕ in the free-by-cyclic
structure:

ϕ = H↓ ◦H−1
↑ :s 7→ st

t 7→ s−1

ϕ−1 = H↑ ◦H−1
↓ :s 7→ t−1

t 7→ ts

The following group is also discussed in [BC07], where it serves as an
example of a hyperbolic group with further interesting geometric properties,
although the determination of the automorphism is not carried out in full
detail.

Example 4.5. G = 〈a, b | abaa = bb〉 The 1-skeleton of the presentation
2-complex is again a rose with two petals, labelled a and b and vertex v, and
one 2-cell attached according to the relation along a and b. Assuming we
have a homomorphism G → Z which takes a to A and b to B, the relation
becomes

A+B +A+A = B +B ⇔ 3A = B.

So we can suppose that a maps to a generator z of Z and b to 3z. We realize
this map topologically by sending v to the base vertex of a circle S1 with
one base vertex and one edge, the edge labelled a one time around the circle
and the edge labelled b three times around the circle. Extending this map
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linearly over the circle, we get a circle valued Morse function which lifts to
a Morse function between universal covers.

From the perspective of the Morse function the relator 2-cell is again
a hexagon, however the edges labelled a having height one and the edges
labelled b having height three. As depicted in Figure 11, the ascending
and descending links are again trees, the ascending link is homeomorphic
to the segment connecting a to the lower third of b, the descending link
is homeomorphic to the segment connecting a to the upper third of b. So
Theorem 4.2 tells us that G is free-by-cyclic.

Looking at the base point preimage D, we see a graph with three vertices,
where one is v and two other located at 1

3 and 2
3 of the height of the segment b

(labelled accordingly 1
3b and 2

3b), and five edges connecting these, as depicted
in Figure 12. Choosing a maximal tree in D and taking the remaining edges
as generators of the free group, this allows us to determine the rank of the
free group. The graph has three vertices, thus a maximal tree has at most
two edges and we choose the subgraph consisting of the edges t1 and t2 as
maximal tree T . The quotient D/T has three edges, so we can conclude
that G = F3 oϕ Z.

For determining the automorphism ϕ we choose the homotopy classes
of p = t3t

−1
1 , q = t1t

−1
4 t−1

2 and r = t5t
−1
2 to be generators of π1(D, v).

We know by the Morse Lemma that the generic point preimage C with the
ascending respective descending link coned off is homotopy equivalent to D,
and since these are trees, C and D are homotopy equivalent. As we can see
from the proof of Theorem 4.2, the presentation 2-complex of G is homotopy
equivalent to a graph of spaces with underlying space the circle with one
base vertex, vertex space D and edge space C. Approaching the vertex from
one direction collapses one edge and sends the others to edges of D, which
can be read off by sliding the dashed lines in the relator cell up and down.
The generic point preimage consists of four vertices, labelled u for the point
on the edge labelled a, and x, y and z for the points on the edge labelled
b, where x is the point in the lower third of the segment, y the point in the
middle third of the segment and z the point in the upper third. With the
orientations chosen as depicted, we can read off the homotopy equivalences
H↓ : C → D and H↑ : C → D, arriving at the following description:

H↓ :l1 7→ t1 H↑ :l1 7→ v

l2 7→ t2 l2 7→ t1

l3 7→ t3 l3 7→ t−1
2

l4 7→ t4 l4 7→ t−1
3

l5 7→ t5 l5 7→ t4

l6 7→ v l6 7→ t5
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l4
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l1

v

v

v

v

v

v

t5

t4
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t2

t1

Lk↑

Lk↓

Figure 11: The relator cell of G = 〈a, b | abaa = bb〉 from universal cover
perspective in Example 4.5.
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t5v

2
3b

1
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Figure 12: The generic point preimage C and the base vertex preimage D
of the Morse function in Example 4.5

The inverse is given by expanding the edges that got collapsed. We are only
interested in the changes on the chosen generators of our free group, so we
directly look at these.

H−1
↓ :p = t3t

−1
1 7→ l6l3l

−1
1 H−1

↑ :p 7→ l1l
−1
4 l−1

2

q = t1t
−1
4 t−1

2 7→ l1l
−1
4 l−1

2 q 7→ l2l
−1
5 l3l

−1
1

r = t5t
−1
2 7→ l6l5l

−1
2 r 7→ l6l3l

−1
1

Finally we arrive at a description of the automorphism ϕ : π1(D, v) →
π1(D, v) by precomposing one homotopy equivalence with the inverse of the
other.

ϕ = H↓ ◦H−1
↑ :p 7→ t1t

−1
4 t−1

2 = q

q 7→ t2t
−1
5 t3t

−1
1 = r−1p

r 7→ t3t
−1
1 = p

ϕ−1 = H↑ ◦H−1
↓ :p 7→ t5t

−1
2 = r

q 7→ t3t
−1
1 = p

r 7→ t5t4t
−1
1 ' t5t−1

2 t2t4t
−1
1 = rq−1

Example 4.6. G = 〈a0, . . . , an | aai+1

i = a0 (1 ≤ i ≤ n − 1), aa10 = an〉.
The presentation 2-complex X consists of one vertex v, one 1-cell for each
generator ai labelled accordingly, one 2-cell corresponding to the relation
aa10 = an and for each 1 ≤ i ≤ n − 1 a 2-cell corresponding to the relation
a
ai+1

i = a0. Assuming a map G → Z which takes ai to Ai, the relations
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become

Ai = A0 (1 ≤ i ≤ n− 1)

A0 = An

and we can assume that the ai are taken to a generator of Z.
Therefore each relator 2-cells becomes a quadrilateral from the perspec-

tive of the Morse function in the universal covering, with one vertex as the
maximum and one as the minimum, and the quadrilateral corresponding to
aa10 = an labelled with a0a1 from bottom to top on the one side and a1an
on the other. The cells corresponding to a

ai+1

i = a0 look similar, with the
difference being that one side is labelled aiai+1 and the other ai+1a0.

a0

a1

a1

an

v

v

v

v
s

p

q

Lk↑

Lk↓

ai

ai+1

ai+1

a0

v

v

v

v
ti

ri

li

Lk↑

Lk↓

Figure 13: The relator cells of G in Example 4.6, the left one corresponding
to the relation aa10 = an, the right one corresponding to a

ai+1

i = a0

The ascending and descending links Lk↑(v,X) and Lk↓(v,X) are indi-
cated in Figure 13. The ascending link consists of one segment connecting
the edge a0 to the edge a1 and segments connecting ai to ai+1 for each
1 ≤ i ≤ n − 1. Hence the ascending link is a tree. The descending link
consists of one segment connecting a1 to an and segments connecting ai+1

to a0 for each 1 ≤ i ≤ n − 1. This is also a tree and we can conclude that
G is free-by-cyclic. The base point preimage of the Morse function D is a
rose with n petals, one labelled s as indicated in the figure, and the other
ones labelled t1, . . . , tn−1. By the Morse Lemma, D is homotopy equivalent
to C with the copies of the ascending respective descending links coned off.
These are trees and we conclude that C and D are homotopy equivalent.

Again under abuse of notation, we take the homotopy classes of these
edges to be the generators of the free group, hence G = Fn oϕ Z with
Fn = 〈s, t1, . . . , tn−1〉.

We wish to determine automorphism ϕ. To this end we let xi be the
point lying on the edge labelled ai in the generic preimage D, which is
depicted in Figure 14. As in the previous examples, we slide the dashed lines
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corresponding to edges in the generic point preimage in the relator cells up
and down, corresponding to the homotopy equivalences H↑ : C → D and
H↓ : C → D.

x0

x1

x2

xi

xi+1

xn

q

l1

l2. . .

li−1

. .
.

lili+1

. . .

ln−1

. . .

p

r1

ri−1

ri

rn−1

Figure 14: The generic point preimage C in Example 4.6.

With the orientations chosen in Figure 14, we obtain the following de-
scription of H↓ and H↑:

H↓ :p 7→ s H↑ :p 7→ v

q 7→ v q 7→ s

ri 7→ t−1
i ri 7→ v

li 7→ v li 7→ ti

So H↓ collapses the edges q and li and H↑ collapses the edges p and ri for
each 1 ≤ i ≤ n− 1. The inverses are given by expanding these edges.

H−1
↓ :s 7→ qpl−1

n−1 · · · l
−1
1 q−1 H−1

↑ :s 7→ qpr−1
n−1

ti 7→ ql1 · · · lir−1
i t1 7→ rn−1p

−1l1r
−1
1

ti 7→ ri−1lir
−1
i (2 ≤ i ≤ n− 1)

Now we can obtain the automorphism ϕ by precomposing one homotopy
equivalence with the inverse of the other.

ϕ = H↓ ◦H−1
↑ :s 7→ stn−1

t1 7→ t−1
n−1s

−1t1

ti 7→ t−1
i−1ti (2 ≤ i ≤ n− 1)

ϕ−1 = H↑ ◦H−1
↓ :s 7→ st−1

n−1 · · · t
−1
1 s−1

ti 7→ st1 · · · ti
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This concludes the examples and the treatment of the Morse criterion
for free-by-cyclic groups. We have seen that it is not only possible to decide
whether or not a group given by a presentation is free-by-cyclic or not,
but also that we can read off the automorphism in the semidirect product.
In light of the first section the question arises whether these groups have
solvable Word or Transformation Problem. In fact, if the free group is of
finite rank, it has been shown in [BMMV06] that the Conjugacy Problem is
solvable and hence the Word Problem, as discussed in Section 2.
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Auffindung von Übereinstimmungen, sowie mit einer zu diesem Zweck vorzu-
nehmenden Speicherung der Arbeit in eine Datenbank einverstanden.

(Ort, Datum, Unterschrift)

45


	Preface
	Hyperbolic spaces and groups
	The Word and Conjugacy Problem of hyperbolic groups
	Solving the Word Problem of hyperbolic groups
	Solving the Conjugacy Problem in hyperbolic groups

	Morse functions on affine cell complexes
	Morse criterion for free-by-cyclic groups
	Application of the Morse criterion to some examples

	Acknowledgements
	References

